85 research outputs found

    B-cell development : one problem, multiple solutions.

    Get PDF
    Interspecies variations in the processes of B-cell development and repertoire generation contrast with the greater consistency of T-cell development. B-cell development in mice and humans, with postnatal B-cell generation of new repertoire in the bone marrow throughout life, is regarded as the 'standard' pattern. In contrast, accounts of B cells in birds, sheep, cattle, rabbits and pigs (the 'other' species) describe cessation of gene diversification in the perinatal period, with the gut-associated lymphoid tissue (GALT) functioning as the primary lymphoid organ thereafter. It has become customary to regard the developmental pathways of T and B cells within any individual species as being as dissimilar as the functions of the two mature cell types. Reinterpretation of B-cell development patterns in different species is overdue in response to two types of reports. The first of these describe T-B 'crossover', specifically the intrathymic production of B cells and the extrathymic production of T cells. The second attests to the extent of sharing of B-cell developmental features across the two groups of species. We propose that, as is a feature of other haematopoietic cells, a menu of alternative B- and T-cell pathways has been retained and shared across species. A single pathway usually predominates in any species, masking alternatives. The observed predominance of any pathway is determined by factors such as placental permeability, extent of maturation of the immune system by birth and the feasibility of direct experimental intervention in development

    Synthetic Nanoparticles for Vaccines and Immunotherapy

    Get PDF
    The immune system plays a critical role in our health. No other component of human physiology plays a decisive role in as diverse an array of maladies, from deadly diseases with which we are all familiar to equally terrible esoteric conditions: HIV, malaria, pneumococcal and influenza infections; cancer; atherosclerosis; autoimmune diseases such as lupus, diabetes, and multiple sclerosis. The importance of understanding the function of the immune system and learning how to modulate immunity to protect against or treat disease thus cannot be overstated. Fortunately, we are entering an exciting era where the science of immunology is defining pathways for the rational manipulation of the immune system at the cellular and molecular level, and this understanding is leading to dramatic advances in the clinic that are transforming the future of medicine.1,2 These initial advances are being made primarily through biologic drugs– recombinant proteins (especially antibodies) or patient-derived cell therapies– but exciting data from preclinical studies suggest that a marriage of approaches based in biotechnology with the materials science and chemistry of nanomaterials, especially nanoparticles, could enable more effective and safer immune engineering strategies. This review will examine these nanoparticle-based strategies to immune modulation in detail, and discuss the promise and outstanding challenges facing the field of immune engineering from a chemical biology/materials engineering perspectiveNational Institutes of Health (U.S.) (Grants AI111860, CA174795, CA172164, AI091693, and AI095109)United States. Department of Defense (W911NF-13-D-0001 and Awards W911NF-07-D-0004

    Pharmaceutical Particle Engineering via Spray Drying

    Full text link

    Possible Correlates of Long-Term Protection against Helicobacter pylori following Systemic or Combinations of Mucosal and Systemic Immunizations▿

    No full text
    The ability to induce long-term immunity to Helicobacter pylori is necessary for an effective vaccine. This study was designed to establish the most efficient route(s) (systemic, mucosal, or a combination) of immunization for induction of long-term immunity and to define correlates of protection. Mice were immunized orally alone (oral group), intramuscularly (i.m.) alone (i.m. group), orally followed by i.m. (oral/i.m. group), or i.m. followed by orally (i.m./oral group). Long-term protective immunity to oral H. pylori challenge was observed 3 months after immunization through the i.m. or oral/i.m. route. Protection correlated with an increase in H. pylori-specific interleukin-12 and both immunoglobulin G1 (IgG1) and IgG2a serum titers following challenge. Mice that were not protected (oral or i.m./oral) had increased levels of IgA in both sera and Peyer's patches. This study demonstrates the ability to induce long-term immunity against H. pylori, provides correlates of protection, and illustrates the crucial role of the immunization route(s)

    De novo expression of MECA-79 glycoprotein-determinant on developing B lymphocytes in gut-associated lymphoid tissues

    No full text
    Rabbit is one of several species that depend on development of B lymphocytes in gut-associated lymphoid tissues for primary immunoglobulin-repertoire diversification. The rabbit appendix is an important site of early B-lymphocyte development. We previously reported that peripheral lymph node addressin detected by monoclonal antibody (mAb) MECA-79 played a role in recruitment of immature blood-borne B cells into neonatal rabbit appendix. Here, we report expression of an ∼127 000 MW O-linked sulphated proteoglycan on developing B cells in appendix and Peyer's patches recognized by the mAb MECA-79. Binding of the mAb to B lymphocytes was sensitive to enzyme treatment with O-sialoglycoprotease and expression was partially inhibited by sodium chlorate, a metabolic inhibitor of sulphation. The proportions of MECA-79+ B lymphocytes gradually increased from < 0·5% at 3 days to > 70% at 6 weeks in appendix and Peyer's patches. The proportions of MECA-79+ B lymphocytes in spleen and peripheral blood were very low (0·5–2%). However, the MECA-79 determinant was detected on B cells in splenic germinal centres after immunization. In situ labelling of appendix cells showed that the MECA-79 determinant was expressed on fluorescein-labelled B lymphocytes that migrated from appendix into mesenteric lymph nodes. B-cell MECA-79 may be involved in interactions with T cells and/or dendritic cells. Alternatively, because we found that lymphatic endothelium in the thymus-dependent area of appendix, a site for lymphocyte exit, expressed P-selectin (CD62P), interaction of the MECA-79 determinant on B cells with CD62P may have a role in the exit of B lymphocytes from rabbit appendix

    Enhanced mucosal and systemic immune responses to Helicobacter pylori antigens through mucosal priming followed by systemic boosting immunizaztion

    No full text
    It is estimated that Helicobacter pylori infects the stomachs of over 50% of the world's population and if not treated may cause chronic gastritis, peptic ulcer disease, gastric adenocarcinoma and gastric B-cell lymphoma. The aim of this study was to enhance the mucosal and systemic immune responses against the H. pylori antigens cytotoxin-associated gene A (CagA) and neutrophil-activating protein (NAP), through combinations of mucosal and systemic immunizations in female BALB/c mice. We found that oral or intranasal (i.n.) followed by i.m. immunizations induced significantly higher serum titres against NAP and CagA compared to i.n. alone, oral alone, i.m. alone, i.m. followed by i.n. or i.m. followed by oral immunizations. However, only oral followed by i.m. immunizations induced anti-NAP antibody-secreting cells in the stomach. Moreover, mucosal immunizations alone or in combination with i.m., but not i.m. immunizations alone, induced mucosal immunoglobulin A (IgA) responses in faeces. Any single route or combination of immunization routes with NAP and CagA preferentially induced antigen-specific splenic interleukin-4-secreting cells and far fewer interferon-γ-secreting cells in the spleen. Moreover, i.n. immunizations alone or in combination with i.m. immunizations induced predominantly serum IgG1 and far less serum IgG2a. Importantly, we found that while both i.n. and i.m. recall immunizations induced similar levels of serum antibody responses, mucosal IgA responses in faeces were only achieved through i.n. recall immunization. Collectively, our data show that mucosal followed by systemic immunization significantly enhanced local and systemic immune responses and that i.n. recall immunization is required to induce both mucosal and systemic memory type responses

    &quot;All that palsies is not Bell&apos;s [1]&quot;-The need to define Bell&apos;s palsy as an adverse event following immunization

    No full text
    Bell&apos;s palsy has been reported as an adverse event following immunization (AEFI). Review of the published literature reveals that several characteristics have been used to describe Bell&apos;s palsy, which differ significantly from author to author. Evidently, the definition of &quot;Bell&apos;s palsy&quot; remains controversial, and consensus between different medical subspecialties is urgently needed. The Brighton Collaboration has formed an international working group with representatives of neurology, otorhinolaryngology, pediatrics, electrophysiology, pharmacology, pharmaceutical and biotech industry as well as regulatory agencies to create a case definition of Bell&apos;s palsy as an AEFI. © 2007 Elsevier Ltd. All rights reserved

    Microneedle mediated intradermal delivery of adjuvanted recombinant HIV-1 CN54gp140 effectively primes mucosal boost inoculations

    Get PDF
    AbstractDissolving polymeric microneedle arrays formulated to contain recombinant CN54 HIVgp140 and the TLR4 agonist adjuvant MPLA were assessed for their ability to elicit antigen-specific immunity. Using this novel microneedle system we successfully primed antigen-specific responses that were further boosted by an intranasal mucosal inoculation to elicit significant antigen-specific immunity. This prime-boost modality generated similar serum and mucosal gp140-specific IgG levels to the adjuvanted and systemic subcutaneous inoculations. While the microneedle primed groups demonstrated a balanced Th1/Th2 profile, strong Th2 polarization was observed in the subcutaneous inoculation group, likely due to the high level of IL-5 secretion from cells in this group. Significantly, the animals that received a microneedle prime and intranasal boost regimen elicited a high level IgA response in both the serum and mucosa, which was greatly enhanced over the subcutaneous group. The splenocytes from this inoculation group secreted moderate levels of IL-5 and IL-10 as well as high amounts of IL-2, cytokines known to act in synergy to induce IgA. This work opens up the possibility for microneedle-based HIV vaccination strategies that, once fully developed, will greatly reduce risk for vaccinators and patients, with those in the developing world set to benefit most
    corecore